19 research outputs found

    The association study of polymorphic variants of hypothalamic-pituitary-adrenal system genes (AVPR1B, OXTR) and aggressive behavior manifestation: a focus on social environment

    Get PDF
    Considering a multifactorial nature of developing aggression, the present study is aimed to estimate both the genetic- and haplotype-based effects of the OXTR and AVPR1B genes and gene-by-environment interactions in developing A

    Longitudinal genetic studies of cognitive characteristics

    Get PDF
    The present review describes longitudinal studies of cognitive traits and functions determining the causes of their variations and their possible correction to prevent cognitive impairment. The present study reviews the involvement of such environmental factors as nutrition, prenatal maternal stress, social isolation and others in cognitive functioning. The role of epigenetic factors in the implementation of environmental effects in cognitive characteristics is revealed. Considering the epigenome significance, several studies were focused on the design of substances affecting methylation and histone modification, which can be used for the treatment of cognitive disorders. The appropriate correction of epigenetic factors related to environmental differences in cognitive abilities requires to determine the mechanisms of chromatin modifications and variations in DNA methylation. Transposons representing stress-sensitive DNA elements appeared to mediate the environmental influence on epigenetic modifications. They can explain the mechanism of transgenerational transfer of information on cognitive abilities. Recently, large-scale meta-analyses based on the results of studies, which identified genetic associations with various cognitive traits, were carried out. As a result, the role of genes actively expressed in the brain, such as BDNF, COMT, CADM2, CYP2D6, APBA1, CHRNA7, PDE1C, PDE4B, and PDE4D in cognitive abilities was revealed. The association between cognitive functioning and genes, which have been previously involved in developing psychiatric disorders (MEF2C, CYP2D6, FAM109B, SEPT3, NAGA, TCF20, NDUFA6 genes), was revealed, thus indicating the role of the similar mechanisms of genetic and neural networks in both normal cognition and cognitive impairment. An important role in both processes belongs to common epigenetic factors. The genes involved in DNA methylation (DNMT1, DNMT3B, and FTO), histone modifications (CREBBP, CUL4B, EHMT1, EP300, EZH2, HLCS, HUWE1, KAT6B, KMT2A, KMT2D, KMT2C, NSD1, WHSC1, and UBE2A) and chromatin remodeling (ACTB, ARID1A, ARID1B, ATRX, CHD2, CHD7, CHD8, SMARCA2, SMARCA4, SMARCB1, SMARCE1, SRCAP, and SS18L1) are associated with increased risk of psychiatric diseases with cognitive deficiency together with normal cognitive functioning. The data on the correlation between transgenerational epigenetic inheritance of cognitive abilities and the insert of transposable elements in intergenic regions is discussed. Transposons regulate genes functioning in the brain due to the processing of their transcripts into non-coding RNAs. The content, quantity and arrangement of transposable elements in human genome, which do not affect changes in nucleotide sequences of protein encoding genes, but affect their expression, can be transmitted to the next generation

    A replication study of genetic variants associated with high-level musical aptitude

    Get PDF
    The present study sought to examine the main and combined effects of related gene variants in developing musical abilities in individuals from Russi

    Recent advances in genetics of aggressive behavior

    Get PDF
    One of the most important problems of modern neurobiology and medicine is an understanding of the mechanisms of normal and pathological behavior of a person. Aggressive behavior is an integral part of the human psyche. However, environmental risk factors, mental illness and somatic diseases can lead to increased aggression to be the biological basis of antisocial behavior in a human society. An important role in development of aggressive behavior belongs to the hereditary factors that may be linked to abnormal functioning of neurotransmitter systems in the brain yet the underlying genetic mechanisms remain unclear, which is due to a large number of single nucleotide polymorphisms, insertions and deletions in the structure of genes that encode the components of the neurotransmitter systems. The most studied candidate genes for aggressive behavior are serotonergic (TPH1, TPH2, HTR2A, SLC6A4) and dopaminergic (DRD4, SLC6A3) system genes, as well as the serotonin or catecholamine metabolizing enzyme genes (COMT, MAOA). In addition, there is evidence that the hypothalamic-pituitary system genes (OXT, OXTR, AVPR1A, AVPR1B), the sex hormone receptors genes (ER1, AR), neurotrophin (BDNF) and neuronal apoptosis genes (CASP3, BAX) may also be involved in development of aggressive behavior. The results of Genome-Wide Association Studies (GWAS) have demonstrated that FYN, LRRTM4, NTM, CDH13, DYRK1A and other genes are involved in regulation of aggressive behavior. These and other evidence suggest that genetic predisposition to aggressive behavior may be a very complex process

    Genetic basis of depressive disorders

    Get PDF
    Depression is a common mental disorder being one of the main causes of disability and mortality worldwide. Despite an intensive research during the past decades, the etiology of depressive disorders (DDs) remains incompletely understood; however, genetic factors are significantly involved in the liability to depression. The present review is focused on the studies based on a candidate gene approach, genome-wide association studies (GWAS) and whole exome sequencing (WES), which previously demonstrated associations between gene polymorphisms and DDs. According to the first approach, DD development is affected by serotonergic (TPH1, TPH2, HTR1A, HTR2A, and SLC6A4), dopaminergic (DRD4, SLC6A3) and noradrenergic (SLC6A2) system genes, and genes of enzymatic degradation (MAOA, COMT). In addition, there is evidence of the involvement of HPA-axis genes (OXTR, AVPR1A, and AVPR1B), sex hormone receptors genes (ESR1, ESR2, and AR), neurotrophin (BDNF) and methylenetetrahydrofolate reductase (MTHFR) genes, neuronal apoptosis (CASP3, BCL-XL, BAX, NPY, APP, and GRIN1) and inflammatory system (TNF, CRP, IL6, IL1B, PSMB4, PSMD9, and STAT3) genes in DD development. The results of the second approach (GWAS and WES) revealed that the PCLO, SIRT1, GNL3, GLT8D1, ITIH3, MTNR1A, BMP5, FHIT, KSR2, PCDH9, and AUTS2 genes predominantly responsible for neurogenesis and cell adhesion are involved in liability to depression. Therefore, the findings discussed suggest that genetic liability to DD is a complex process, which assumes simultaneous functioning of multiple genes including those reported previously, and requires future research in this field

    The role of inflammatory system genes in individual differences in nonverbal intelligence

    Get PDF
    Nonverbal intelligence represents one of the components of brain cognitive functions, which uses visual images and nonverbal approaches for solving required tasks. Interaction between the nervous and immune systems plays a specif ic role in individual differences in brain cognitive functions. Therefore, the genes encoding pro- and antiinf lammatory cytokines are prospective candidate genes in the study of nonverbal intelligence. Within the framework of the present study, we conducted the association analysis of six SNPs in the genes that encode proteins involved in inf lammatory response regulation in the central nervous system (CRP rs3093077, IL1А rs1800587, IL1B rs16944, TNF/ LTA rs1041981, rs1800629, and P2RX7 rs2230912), with nonverbal intelligence in mentally healthy young adults aged 18– 25 years without cognitive decline with inclusion of sex, ethnicity and the presence of the “risky” APOE ε4 allele as covariates. Considering an important role of environmental factors in the development of brain cognitive functions in general and nonverbal intelligence in particular, we conducted an analysis of gene-by-environment (G × E) interactions. As a result of a statistical analysis, rs1041981 and rs1800629 in the tumor necrosis factor gene (TNF) were shown to be associated with a phenotypic variance in nonverbal intelligence at the haplotype level (for АА-haplotype: βST = 1.19; p = 0.033; pperm = 0.047) in carriers of the “risky” APOE ε4 allele. Gene-by-environment interaction models, which determined interindividual differences in nonverbal intelligence, have been constructed: sibship size (number of children in a family) and smoking demonstrated a modulating effect on association of the TNF/LTA (rs1041981) (β = 2.08; βST = 0.16; p = 0.001) and P2RX7 (rs2230912) (β = –1.70; βST = –0.10; p = 0.022) gene polymorphisms with nonverbal intelligence. The data obtained indicate that the effect of TNF/LTA on the development of cognitive functions is evident only in the presence of the “unfavorable” APOE ε4 variant and/or certain environmental conditions

    The role of the KIBRA and APOE genes in developing spatial abilities in humans

    Get PDF
    In the contemporary high-tech society, spatial abilities predict individual life and professional success, especially in the STEM (Science, Technology, Engineering, and Mathematics) disciplines. According to neurobiological hypotheses, individual differences in cognitive abilities may be attributed to the functioning of genes involved in the regulation of neurogenesis and synaptic plasticity. In addition, genome-wide association studies identified rs17070145 located in the KIBRA gene, which was associated with individual differences in episodic memory. Considering a significant role of genetic and environmental components in cognitive functioning, the present study aimed to estimate the main effect of NGF (rs6330), NRXN1 (rs1045881, rs4971648), KIBRA (rs17070145), NRG1 (rs6994992), BDNF (rs6265), GRIN2B (rs3764030), APOE (rs7412, rs429358), and SNAP25 (rs363050) gene polymorphisms and to assess the effect of gene-environment interactions on individual differences in spatial ability in individuals without cognitive decline aged 18–25 years (N = 1011, 80 % women). Spatial abilities were measured using a battery of cognitive tests including the assessment of “3D shape rotation” (mental rotation). Multiple regression analysis, which was carried out in the total sample controlling for sex, ethnicity and the presence of the “risk” APOE ε4 allele, demonstrated the association of the rs17070145 Т-allele in the KIBRA gene with enhanced spatial ability (β = 1.32; pFDR = 0.037) compared to carriers of the rs17070145 CC-genotype. The analysis of gene-environment interactions revealed that nicotine smoking (β = 3.74; p = 0.010) and urban/rural residency in childhood (β = –6.94; p = 0.0002) modulated the association of KIBRA rs17070145 and АРОЕ (rs7412, rs429358) gene variants with individual differences in mental rotation, respectively. The data obtained confirm the effect of the KIBRA rs17070145 Т-allele on improved cognitive functioning and for the first time evidence the association of the mentioned genetic variant with spatial abilities in humans. A “protective” effect of the APOE ε2 allele on enhanced cognitive functioning is observed only under certain conditions related to childhood rearing

    GENETIC BASES OF THE DEVELOPMENT OF SPATIAL INTELLIGENCE

    Full text link
    This publication is a brief overview of the concept of human spatial thinking. Spatial abilities are considered as a multidimensional set of cognitive traits that play an important role in the life of an individual. The criticality of various internal and external factors involved in the development of spatial intelligence, as well as the relevance of research conducted in this area of cognitive genomics, is noted.Данная публикация представляет собой краткий обзор понятия пространственного мышления человека. Пространственные способности рассматриваются как многомерный комплекс когнитивных черт, играющий важную роль в жизни индивида. Отмечается критичность вовлеченных в развитие пространственного интеллекта различных внутренних и внешних факторов, а также актуальность исследований, проводимых в этой области когнитивной геномики.Работа выполнена при поддержке государственного задания Министерства науки и высшего образования Российской Федерации (FZWU-2020–0027), Министерства науки и высшего образования Российской Федерации (контракт № 1 от 28.12.2021)

    Epigenetics of suicidal behavior

    No full text
    Suicide is the second leading cause of death among young people and therefore being a serious global problem worldwide. The study of genetic and epigenetic factors in the development of suicidal behavior plays an important role in the development of advanced methods of diagnosis and treatment of this pathology. The role of hereditary factors in the development of suicidal behavior is estimated at 30–55 %, with a pronounced comorbidity with other psychopathologies. The study of genetic liability to suicidal behavior is based on molecular-genetic methods including association and linkage analyses, chip gene expression arrays, and genome-wide association studies. Published data identified multiple genes including those involved in the functioning of serotonergic (SLC6A4, TPH, 5-HT1A), hypothalamic-pituitary-adrenal systems (FKBP5) and polyamines (SAT and OATL1) associated with suicidal behavior. However, the diversity of interacting genetic loci complicates the interpretation of the development of a complex phenotype of pathology and prevents the association from being detected. To solve this problem and interpret the missing relationship between the environment and the genome, promising results were obtained from a study of epigenetic factors, which affected the expression of a number of candidate genes involved in brain functioning in suicidal behavior. The analysis of a brain obtained from suicide victims, representing a unique tool for the analysis of modified genomic processes, revealed a wide range of reprogramming patterns of DNA methylation in promoters of the genes of polyamine (OAZ1, OAZ2, AMD1, ARG2, SKA2), serotonergic (SLC6A4) and GABAergic (GABRA1) systems, HPA-axis (GR, NR3C1), tyrosine kinase (TrkB) receptors, brain-derived neurotrophic factor (BDNF). The role of histone modifications in distinct genes (Cx30, Cx43, TrkB.T1) and the expression of specific long noncoding RNAs and microRNAs in the development of suicidal behavior, which is promising for the development of diagnostic algorithms and target therapy, is discussed
    corecore